NCCN Guidelines Version 1.2016 Panel Members

Anal Carcinoma

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al B. Benson, III, MD/Chair †</td>
<td>Mayo Clinic Cancer Center</td>
</tr>
<tr>
<td>Robert H. Lurie Comprehensive Cancer Center of Northwestern University</td>
<td></td>
</tr>
<tr>
<td>Alan P. Venook, MD/Vice-Chair † ‡</td>
<td>Yale Cancer Center/Smilow Cancer Hospital</td>
</tr>
<tr>
<td>UCSF Helen Diller Family Comprehensive Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Tanios Bekaii-Saab, MD †</td>
<td>Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine</td>
</tr>
<tr>
<td>The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute</td>
<td></td>
</tr>
<tr>
<td>Emily Chan, MD, PhD †</td>
<td>University of Alabama at Birmingham Comprehensive Cancer Center</td>
</tr>
<tr>
<td>Vanderbilt-Ingram Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Yi-Jen Chen, MD, PhD §</td>
<td>Stanford Cancer Institute</td>
</tr>
<tr>
<td>City of Hope Comprehensive Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Harry S. Cooper, MD ≠</td>
<td>Smitha Krishnamurthi, MD † ‡</td>
</tr>
<tr>
<td>Fox Chase Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Paul F. Engstrom, MD †</td>
<td>Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute</td>
</tr>
<tr>
<td>Fox Chase Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Peter C. Enzinger, MD †</td>
<td>Lucille A. Leong, MD †</td>
</tr>
<tr>
<td>Dana-Farber/Brigham and Women’s Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Moon J. Fenton, MD, PhD †</td>
<td>City of Hope Comprehensive Cancer Center</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital/University of Tennessee Health Science Center</td>
<td></td>
</tr>
<tr>
<td>Charles S. Fuchs, MD, MPH †</td>
<td>Edward Lin, MD †</td>
</tr>
<tr>
<td>Dana-Farber/Brigham and Women’s Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Jean L. Grem, MD †</td>
<td>Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance</td>
</tr>
<tr>
<td>Fred & Pamela Buffett Cancer Center at The Nebraska Medical Center</td>
<td></td>
</tr>
<tr>
<td>James D. Murphy, MD, MS §</td>
<td>Wells A. Messersmith, MD †</td>
</tr>
<tr>
<td>UC San Diego Moores Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Steven Nurkin, MD, MS †</td>
<td>University of Colorado Cancer Center</td>
</tr>
<tr>
<td>Roswell Park Cancer Institute</td>
<td></td>
</tr>
<tr>
<td>David P. Ryan, MD †</td>
<td>Mary F. Mulcahy, MD †</td>
</tr>
<tr>
<td>Massachusetts General Hospital Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Leonard Saltz, MD † ‡ ‡</td>
<td>Robert H. Lurie Comprehensive Cancer Center of Northwestern University</td>
</tr>
<tr>
<td>Memorial Sloan Kettering Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Sunil Sharma, MD †</td>
<td>NCCN Guidelines Panel Disclosures</td>
</tr>
<tr>
<td>Huntsman Cancer Institute at the University of Utah</td>
<td></td>
</tr>
<tr>
<td>John M. Skibber, MD †</td>
<td>¶ Discussion Section Writing Committee</td>
</tr>
<tr>
<td>The University of Texas MD Anderson Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Constantinos T. Sofocleous, MD, PhD φ</td>
<td>Memorial Sloan Kettering Cancer Center</td>
</tr>
<tr>
<td>Elena M. Stoffel, MD, MPH ≠</td>
<td>Unlimited</td>
</tr>
<tr>
<td>University of Michigan Comprehensive Cancer Center</td>
<td></td>
</tr>
<tr>
<td>Eden Stotsky-Himelfarb, BSN, RN ¥</td>
<td>Morning</td>
</tr>
<tr>
<td>The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins</td>
<td></td>
</tr>
<tr>
<td>Christopher G. Willett, MD §</td>
<td>Duke Cancer Institute</td>
</tr>
</tbody>
</table>

Multiple roles are possible.
Clinical Trials

NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN member institutions, click here: nccn.org/clinical_trials/physician.html.

NCCN Categories of Evidence and Consensus

All recommendations are Category 2A unless otherwise specified.

See [NCCN Categories of Evidence and Consensus](http://nccn.org/clinical_trials/physician.html).

NCCN Anal Carcinoma Panel Members

- [Summary of the Guidelines Updates](#)
- **Workup and Treatment - Anal canal cancer (ANAL-1)**
- **Workup and Treatment - Anal margin lesion (ANAL-2)**
- **Follow-up Therapy and Surveillance (ANAL-3)**
- **Principles of Chemotherapy (ANAL-A)**
- **Principles of Radiation Therapy (ANAL-B)**
- **Staging (ST-1)**

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2015.
Updates in Version 1.2016 of the Guidelines for Anal Carcinoma from Version 2.2015 version include:

ANAL-1
- Workup; bullet 2, sub-bullet 1 modified: *Consider* biopsy or FNA if suspicious nodes.
- Workup; bullet 3 modified: Chest/abdominal/pelvic CT or pelvic CT or MRI
- Workup; bullet 3, sub-bullet 1 modified: Consider PET scan for T2-4, N0 or Any T, N+
- Footnote “c” added: CT should be with IV and oral contrast. Pelvic MRI with contrast. (also applies to ANAL-2)
- Clinical Stage: T and N categories combined to “locoregional” disease.

ANAL-2
- Workup; bullet 2, sub-bullet 1 modified: *Consider* biopsy or FNA if suspicious nodes.
- Workup; bullet 3 modified: Chest/abdominal/pelvic CT or pelvic CT or MRI
- Workup; bullet 3, sub-bullet 1 modified: Consider PET scan for T2-4, N0 or Any T, N+

ANAL-3
- Surveillance: Anoscopy schedule changed from every 3-6 mo for 5 y to *every 6-12 mo x 3 y*

ANAL-B
- Bullet 6 modified: For T2 lesions with residual disease after 45 Gy, T3/4 lesions, or N1 lesions, an additional boost of 9-14 Gy in 1.8-2 Gy fractions to the original primary tumor volume and involved nodes plus a 2-2.5 cm margin is usually delivered.
- Bullet 7 modified: The consensus of the panel is that IMRT may be used in place of 3-D conformal RT in the treatment of anal carcinoma. IMRT requires expertise and careful target design to avoid reduction in local control by so-called “marginal-miss.” The clinical target volumes for anal cancer used in the RTOG-0529 trial have been described in detail. The outcome results of RTOG-0529 have been reported.
The superior border of the functional anal canal, separating it from the rectum, has been defined as the palpable upper border of the anal sphincter and puborectalis muscles of the anorectal ring. It is approximately 3 to 5 cm in length, and its inferior border starts at the anal verge, the lowermost edge of the sphincter muscles, corresponding to the introitus of the anal orifice.

For melanoma histology, see the NCCN Guidelines for Melanoma; for adenocarcinoma, see the NCCN Guidelines for Rectal Cancer.

CT should be with IV and oral contrast. Pelvic MRI with contrast.

PET-CT scan does not replace a diagnostic CT. The routine use of a PET-CT scan for staging or treatment planning has not been validated.

Patients with anal cancer as the first manifestation of HIV may be treated with the same regimen as non-HIV patients. Patients with active HIV/AIDS-related complications or a history of complications (eg, malignancies, opportunistic infections) may not tolerate full-dose therapy or may not tolerate mitomycin and require dosage adjustment or treatment without mitomycin.

See Principles of Chemotherapy (ANAL-A).

See Principles of Radiation Therapy (ANAL-B).

Cisplatin/5-FU is recommended for metastatic disease. If this regimen fails, no other regimens have been shown to be effective.

See Principles of Chemotherapy (ANAL-A). Local control can be achieved with the use of RT.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines for Anal Carcinoma

Clinical Presentation

Workup

- **DRE**
- **Inguinal lymph node evaluation**
 - Consider biopsy or FNA if suspicious nodes
- **Chest/abdominal CT** + pelvic CT or MRI
 - Consider PET scan
- **Anoscopy**
- **Consider HIV testing + CD4 level if indicated**
- **Gynecologic exam for women, including screening for cervical cancer**

Clinical Stage

Primary Treatment

- **T1, N0**
 - Well differentiated
 - **Local excision**
 - **Adequate margins**
 - Observe
 - **Inadequate margins**
 - **Re-excision** (preferred) or Consider local RT ± 5-FU or capecitabine-based chemotherapy

- **T2-T4, N0 or Any T, N+**
 - **Mitomycin/5-FU** + RT or **Mitomycin/Capecitabine** + RT

- **Metastatic disease**
 - **Cisplatin-based chemotherapy** ± RT

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

b For melanoma histology, see the NCCN Guidelines for Melanoma; for adenocarcinoma, see the NCCN Guidelines for Rectal Cancer.

c*CT should be with IV and oral contrast. Pelvic MRI with contrast.*

d*PET-CT scan does not replace a diagnostic CT. The routine use of a PET-CT scan for staging or treatment planning has not been validated.*

e*Patients with anal cancer as the first manifestation of HIV may be treated with the same regimen as non-HIV patients. Patients with active HIV/AIDS-related complications or a history of complications (eg, malignancies, opportunistic infections) may not tolerate full-dose therapy or may not tolerate mitomycin and require dosage adjustment or treatment without mitomycin.*

f*See Principles of Chemotherapy (ANAL-A).*
g **See Principles of Radiation Therapy (ANAL-B).**

h*Cisplatin/5-FU is recommended for metastatic disease. If this regimen fails, no other regimens have been shown to be effective.*

See Principles of Chemotherapy (ANAL-A). Local control can be achieved with the use of RT.

i*The anal margin starts at the anal verge and includes the perianal skin over a 5- to 6-cm radius from the squamous mucocutaneous junction.*
See Principles of Radiation Therapy (ANAL-B).

Cisplatin/5-FU is recommended for metastatic disease. If this regimen fails, no other regimens have been shown to be effective. See Principles of Chemotherapy ANAL-A. Local control can be achieved with the use of RT.

If a patient with an initially tethered tumor returns 6 weeks post RT with a mobile but suspicious mass, consider biopsy.

Based on the results of the ACT-II study, it may be appropriate to follow patients who have not achieved a complete clinical response with persistent anal cancer up to 6 months following completion of radiation therapy and chemotherapy as long as there is no evidence of progressive disease during this period of follow up. Persistent disease may continue to regress even at 26 weeks post-treatment. James RD, Gynne-Jones R, Meadows HM, et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous cell carcinoma of the anus (Act II): a randomised, phase 3, open-label, 2x2 factorial trial. Lancet Oncol 2013;14:516-524.

Consider muscle flap reconstruction.

There is no evidence supporting resection of metastatic disease.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Localized cancer

5-FU + Mitomycin + RT¹
Continuous infusion 5-FU 1000 mg/m²/d IV days 1-4 and 29-32
Mitomycin 10 mg/m² IV bolus days 1 and 29
Concurrent radiotherapy (See ANAL-B)

Capecitabine + Mitomycin + RT^{2,3}
• Capecitabine 825 mg/m² PO BID, Monday-Friday, on each day that RT is given, throughout the duration of RT (typically 28 treatment days)
 Mitomycin 10 mg/m² days 1 and 29
Concurrent radiotherapy (See ANAL-B)
 or
• Capecitabine 825 mg/m² PO BID days 1-5 weekly x 6 weeks
 Mitomycin 12 mg/m² IV bolus day 1
Concurrent radiotherapy (See ANAL-B)

Metastatic cancer

5-FU + Cisplatin⁴
Continuous infusion 5-FU 1000 mg/m²/d IV days 1-5
Cisplatin 100 mg/m² IV day 2
Repeat every 4 weeks

PRINCIPLES OF RADIATION THERAPY

- Multifield techniques with supervoltage radiation (photon energy of >6 mV) should be used to deliver a minimum dose of 45 Gy in 1.8 Gy-fractions (25 fractions over 5 weeks) to the primary cancer.
- PET-CT should be considered for treatment planning.
- The inguinal nodes and the pelvis, anus, and perineum should be included in the initial radiation fields. The superior field border should be at L5-S1, and the inferior border should include the anus with a minimum 2.5 cm-margin around the anus and tumor. The lateral border should include the lateral inguinal nodes (as determined from imaging or bony landmarks). There should be attempts to reduce the dose to the femoral heads.
- After 17 fractions (30.6 Gy), an additional 14.4 Gy should be given in 8 fractions with the superior field reduced to the bottom of the sacroiliac joints. Additional field reduction off inguinal nodes should occur after 36 Gy for node-negative lesions. This protocol brings the total dose to 45 Gy in 25 fractions over 5 weeks.
- For patients treated using an AP-PA technique, rather than the recommended multifield technique, the dose to the lateral inguinal region should be brought to the minimum dose of 36 Gy using an anterior electron boost matched to the PA exit field.
- For T2 lesions, T3/4 lesions, or N1 lesions, an additional boost of 9-14 Gy in 1.8-2 Gy fractions to the original primary tumor volume and involved nodes plus a 2-2.5 cm margin is usually delivered. This boost brings the total dose to 54-59 Gy in 30-32 fractions over 6-7.5 weeks. A direct perineal boost using photons or electrons with the patient in lithotomy position or a multifield photon approach (AP-PA plus paired laterals, PA + laterals, or other) can be used.
- The consensus of the panel is that IMRT is preferred over 3-D conformal RT in the treatment of anal carcinoma. IMRT requires expertise and careful target design to avoid reduction in local control by so-called “marginal-miss.” The clinical target volumes for anal cancer used in the RTOG-0529 trial have been described in detail. The outcome results of RTOG-0529 have been reported. Also see http://atc.wustl.edu/protocols/rtog-closed/0529/ANAL_Ca_CTVs_5-21-07_Final.pdf for more details of the contouring atlas defined by RTOG.
- Side effect management:
 - Female patients should be considered for vaginal dilators and instructed on the symptoms of vaginal stenosis.
 - Male patients should be counseled on infertility risks and given information regarding sperm banking.
 - Female patients should be counseled on infertility risks and given information regarding oocyte, egg or ovarian tissue banking prior to treatment.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 1.2016 Staging Anal Carcinoma

Table 1. DEFINITIONS OF TNM

- **Primary Tumor (T)**
 - TX: Primary tumor cannot be assessed
 - T0: No evidence of primary tumor
 - Tis: Carcinoma in situ (Bowen's disease, high-grade squamous intraepithelial lesion (HSIL), anal intraepithelial neoplasia II–III (AIN II–III)
 - T1: Tumor 2 cm or less in greatest dimension
 - T2: Tumor more than 2 cm but not more than 5 cm in greatest dimension
 - T3: Tumor more than 5 cm in greatest dimension
 - T4: Tumor of any size invades adjacent organ(s), e.g., vagina, urethra, bladder*
*Note: Direct invasion of the rectal wall, perirectal skin, subcutaneous tissue, or the sphincter muscle(s) is not classified as T4.

- **Regional Lymph Nodes (N)**
 - NX: Regional lymph nodes cannot be assessed
 - N0: No regional lymph node metastasis
 - N1: Metastasis in perirectal lymph node(s)
 - N2: Metastasis in unilateral internal iliac and/or inguinal lymph node(s)
 - N3: Metastasis in perirectal and inguinal lymph nodes and/or bilateral internal iliac and/or inguinal lymph nodes

- **Distant Metastasis (M)**
 - M0: No distant metastasis
 - M1: Distant metastasis

Table 2. ANATOMIC STAGE/PROGNOSTIC GROUPS

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIA</td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>T3</td>
<td>N1</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>N0</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>IIIIB</td>
<td>T4</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Any T</td>
<td>N2</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Any T Any N</td>
<td>M1</td>
<td></td>
</tr>
</tbody>
</table>

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by Springer Science+Business Media, LLC (SBM). (For complete information and data supporting the staging tables, visit www.springer.com.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.
Discussion

This discussion is being updated to correspond with the newly updated algorithm. Last updated 12/09/14

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview ... MS-2
Literature Search Criteria and Guidelines Update Methodology .. MS-2
Risk Factors .. MS-3
 Risk Reduction ... MS-3
 HPV Immunization .. MS-4
Anatomy/Histology ... MS-4
Pathology ... MS-5
Staging .. MS-6
Prognostic Factors .. MS-7
Management of Anal Carcinoma .. MS-7
 Clinical Presentation/Evaluation .. MS-7
 Primary Treatment of Non-Metastatic Anal Carcinoma .. MS-8
 Chemotherapy .. MS-8
 Radiation Therapy .. MS-10
 Treatment of Anal Cancer in Patients with HIV/AIDS .. MS-12
 Recommendations for the Primary Treatment of Anal Canal Cancer .. MS-12
Recommendations for the Primary Treatment of Anal Margin Cancer .. MS-13
Treatment of Metastatic Anal Cancer ... MS-13
Follow-up and Surveillance Following Primary Treatment ... MS-13
Treatment of Locally Progressive or Recurrent Anal Carcinoma .. MS-14
 Follow-up and Surveillance Following Resection ... MS-15
Summary ... MS-15
References ... MS-15

Printed by Tristan Almada on 11/7/2015 8:06:36 AM. For personal use only. Not approved for distribution. Copyright © 2015 National Comprehensive Cancer Network, Inc., All Rights Reserved.
Overview

An estimated 7,210 new cases (2,660 men and 4,550 women) of anal cancer involving the anus, anal canal, or anorectum will occur in the United States in 2014, accounting for approximately 2.5% of digestive system cancers.\(^1\) It has been estimated that 950 deaths due to anal cancer will occur in the United States in 2014.\(^1\) Although considered to be a rare type of cancer, the incidence rate of invasive anal carcinoma in the United States increased by approximately 1.9-fold for men and 1.5-fold for women from the period of 1973 through 1979 to 1994 through 2000 and has continued to increase since that time (see Risk Factors, below).\(^2\)\(^-\)\(^4\)

This manuscript summarizes the NCCN Clinical Practice Guidelines for managing squamous cell anal carcinoma, which represents the most common histologic form of the disease. Other types of cancers occurring in the anal region, such as adenocarcinoma or melanoma, are addressed in other NCCN Guidelines; anal adenocarcinoma and anal melanoma are managed according to the NCCN Guidelines for Rectal Cancer and the NCCN Guidelines for Melanoma, respectively. The recommendations in these guidelines are classified as category 2A except where noted, meaning that there is uniform NCCN consensus, based on lower-level evidence, that the recommendation is appropriate. The panel unanimously endorses patient participation in a clinical trial over standard or accepted therapy.

Literature Search Criteria and Guidelines Update Methodology

Prior to the update of this version of the NCCN Guidelines for Anal Carcinoma, an electronic search of the PubMed database was performed to obtain key literature in the field of anal cancer published between July 23, 2013 and July 23, 2104, using the following search terms: (anal cancer) OR (anal squamous cell carcinoma). The PubMed database was chosen because it remains the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature.\(^5\)

The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV; Practice Guideline; Randomized Controlled Trial; Meta-Analysis; Systematic Reviews; and Validation Studies.

The PubMed search resulted in 519 citations, and their potential relevance was examined. The data from key PubMed articles and articles from additional sources deemed as relevant to these Guidelines and discussed by the panel have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). Recommendations for which high-level evidence is lacking are based on the panel's review of lower-level evidence and expert opinion.

The complete details of the Development and Update of the NCCN Guidelines are available on the NCCN website (www.NCCN.org).

Risk Factors

Anal carcinoma is associated with human papillomavirus (HPV) infection (anal-genital warts); a history of receptive anal intercourse or sexually transmitted disease; a history of cervical, vulvar, or vaginal cancer; immunosuppression after solid organ transplantation or HIV infection; hematologic malignancies; certain autoimmune disorders; and smoking.\(^6\)\(^-\)\(^12\)
The association between anal carcinoma and persistent infection with a high-risk form of HPV (eg, HPV-16; HPV-18) is especially strong.7,13,14 For example, a study of tumor specimens from more than 60 pathology laboratories in Denmark and Sweden showed that high-risk HPV DNA was detected in 84% of anal cancer specimens, with HPV-16 detected in 73% of them. In contrast, high-risk HPV was not detected in any of the rectal cancer specimens analyzed.7 In addition, results of a systematic review of 35 peer-reviewed anal cancer studies that included detection of HPV DNA published up until July 2007 showed the prevalence of HPV-16/18 to be 72% in patients with invasive anal cancer.14 Recent population and registry studies have found similar HPV prevalence rates in anal cancer specimens.15,16 A recent report from the U.S. Centers for Disease Control and Prevention estimates that 86% to 97% of cancers of the anus are attributable to HPV infection.17

Suppression of the immune system by the use of immunosuppressive drugs or HIV infection is likely to facilitate persistence of HPV infection of the anal region.18,19 In the HIV-infected population, the standardized incidence rate of anal carcinoma per 100,000 person-years in the United States, estimated to be 19.0 in 1992 through 1995, increased to 78.2 during 2000 through 2003.20 This result likely reflects both the survival benefits of highly active antiretroviral therapy (HAART) and the lack of an impact of HAART on the progression of anal cancer precursors. The incidence rate has recently been reported to be 131 per 100,000 person-years in HIV-infected men who have sex with men in North America.21 Recent analysis of the French Hospital Database on HIV showed a highly elevated risk of anal cancer in HIV-positive patients, including in those who were on therapy and whose CD4 cell counts were high.22 The data also revealed an increasing incidence of anal cancer in the HIV population over time.

Risk Reduction

High-grade anal intraepithelial neoplasia (AIN) can be a precursor to anal cancer,23-25 and treatment of high-grade AIN may prevent the development of anal cancer. AIN can be identified by cytology, HPV testing, digital rectal examination (DRE), high-resolution anoscopy, and/or biopsy.26,27 Estimates from a recent systematic review and meta-analysis of studies in men who have sex with men, however, suggest that the progression rates of AIN to cancer might be quite low, although prospective data are lacking.28 In addition, the spontaneous regression rate of high-grade AIN is not known.

Routine screening for AIN in high-risk individuals such as HIV-positive patients or men who have sex with men is controversial, because randomized controlled trials showing that such screening programs are efficacious at reducing anal cancer incidence and mortality are lacking, whereas the potential benefits are quite large.29-35

Guidelines for the treatment of AIN have been developed by several groups, including the American Society of Colon and Rectal Surgeons.34,36,37 More recently, a randomized controlled trial in 246 HIV-positive men who have sex with men found that electrocautery was superior to both topical imiquimod and topical fluorouracil in the treatment of AIN overall.38 The subgroup with perianal AIN, as opposed to intra-anal AIN, appeared to respond better to imiquimod. Regardless of treatment, recurrence rates were high, and careful follow-up is likely needed. A large ongoing randomized phase III trial is comparing topical or ablative treatment with active monitoring in HIV-positive patients with high-grade AIN. The primary outcome measure is time to anal cancer, and the study is estimated to be completed in 2022 (clinicaltrials.gov NCT02135419).
HPV Immunization

A quadrivalent HPV vaccine is available and has been shown to be effective in women in preventing persistent cervical infection with HPV-6, -11, -16, or -18 as well as in preventing high-grade cervical intraepithelial neoplasia related to these strains of the virus.\(^{39-41}\) The vaccine has also been shown to be efficacious in young men at preventing genital lesions associated with HPV-6, -11, -16, or -18 infection.\(^{42}\) A recent substudy of a larger double-blind study assessed the efficacy of the vaccine for the prevention of AIN and anal cancer related to infection with HPV-6, -11, -16, or -18 in men who have sex with men.\(^{43}\) In this study, 602 healthy men who have sex with men aged 16 to 26 years were randomized to receive the vaccine or a placebo. While none of the participants in either arm developed anal cancer during the 3-year follow-up period, there were 5 cases of grade 2/3 AIN associated with one of the vaccine strains in the vaccine arm and 24 such cases in the placebo arm in the per-protocol population, giving an observed efficacy of 77.5% (95% CI 39.6–93.3). Since high-grade AIN are known to have the ability to progress to anal cancer,\(^{23,25}\) these results suggest that use of the quadrivalent HPV vaccine in men who have sex with men may reduce the risk of anal cancer in this population. The Advisory Committee on Immunization Practices recommends routine use of this quadrivalent vaccine in boys and girls aged 11 and 12 years, in females aged 13 to 26 years, and in males aged 13 to 21 years who have not been previously vaccinated.\(^{44,45}\) The American Academy of Pediatrics concurs with this recommendation and also recommends that men who have sex with men up to age 26 should be immunized.\(^{46}\)

A bivalent HPV vaccine against HPV-16 and -18 is also available.\(^{44}\) In a randomized, double-blind, controlled trial of women in Costa Rica, the vaccine was 83.6% effective against initial anal HPV-16/18 infection (95% CI 66.7–92.8).\(^{47}\) It has also been shown to be effective at preventing high-grade cervical intraepithelial neoplasias in young women.\(^{48}\) The effect on precancerous anal lesions has not yet been reported.

Anatomy/Histology

The anal region is comprised of the anal canal and the anal margin, dividing anal cancers into 2 categories. The anal canal is the more proximal portion of the anal region. Various definitions of the anal canal exist (ie, functional/surgical; anatomic; histologic) that are based on particular physical/anatomic landmarks or histologic characteristics. Histologically, the mucosal lining of the anal canal is predominantly formed by squamous epithelium, in contrast to the mucosa of the rectum, which is lined with glandular epithelium.\(^{9,49}\) The anal margin, on the other hand, is lined with skin.\(^{9}\) By the histologic definition, the most superior aspect of the anal canal is a 1- to 2-cm zone between the anal and rectal epithelium, which has rectal, urothelial, and squamous histologic characteristics.\(^{9,49}\) The most inferior aspect of the anal canal, approximately at the anal verge, corresponds to the area where the mucosa, lined with modified squamous epithelium, transitions to an epidermis-lined anal margin.

The anatomic anal canal begins at the anorectal ring and extends to the anal verge (ie, squamous mucocutaneous junction with the perianal skin).\(^{50,51}\) [Rickert, 2000 #40]

Functionally, the anal canal is defined by the sphincter muscles. The superior border of the functional anal canal, separating it from the rectum, has been defined as the palpable upper border of the anal sphincter and puborectalis muscles of the anorectal ring. It is approximately 3 to 5 cm in length, and its inferior border starts at the
anal verge, the lowermost edge of the sphincter muscles, corresponding to the introitus of the anal orifice. The functional definition of the anal canal is primarily used in the radical surgical treatment of anal cancer and is used in these guidelines to differentiate between treatment options.

The anal margin starts at the anal verge and includes the perianal skin over a 5- to 6-cm radius from the squamous mucocutaneous junction. It is covered by epidermis, not mucosa. Tumors can involve both the anal canal and the anal margin.

Pathology

Most primary cancers of the anal canal are of squamous cell histology. The second edition of the WHO classification system of anal carcinoma designated all squamous cell carcinoma variants of the anal canal as cloacogenic and identified subtypes as large-cell keratinizing, large-cell non-keratinizing (transitional), or basaloid. It has been reported that squamous cell cancers in the more proximal region of the anal canal are more likely to be non-keratinizing and less differentiated. However, the terms cloacogenic, transitional, keratinizing, and basaloid were removed from the third and fourth editions of the WHO classification system of anal canal carcinoma, and all subtypes have been included under a single generic heading of squamous cell carcinoma. Reasons for this change include the following: both cloacogenic (which is sometimes used interchangeably with the term basaloid) and transitional tumors are now considered to be non-keratinizing tumors; it has been reported that both keratinizing and non-keratinizing tumors have a similar natural history and prognosis; and a mixture of cell types frequently characterize histologic specimens of squamous cell carcinomas of the anal canal. No distinction between squamous anal canal tumors on the basis of cell type has been made in these guidelines. Other less common anal canal tumors, not addressed in these guidelines, include adenocarcinomas in the rectal mucosa or the anal glands, small cell (anaplastic) carcinoma, undifferentiated cancers, and melanomas.

Squamous cell carcinomas of the anal margin are more likely than those of the anal canal to be well-differentiated and keratinizing large-cell types, but they are not characterized in the guidelines according to cell type. The presence of skin appendages (eg, hair follicles, sweat glands) in anal margin tumors can distinguish them from anal canal tumors. However, it is not always possible to distinguish between anal canal and anal margin squamous cell carcinoma since tumors can involve both areas.

Lymph drainage of anal cancer tumors is dependent on the location of the tumor in the anal region: cancers in the perianal skin and the region of the anal canal distal to the dentate line drain mainly to the superficial inguinal nodes. Lymph drainage at and proximal to the dentate line is directed toward the anorectal, perirectal, and paravertebral nodes and to some of the nodes of the internal iliac system. More proximal cancers drain to perirectal nodes and to nodes of the inferior mesenteric system. Therefore, distal anal cancers present with a higher incidence of inguinal node metastases. Because the lymphatic drainage systems throughout the anal canal are not isolated from each other, however, inguinal node metastases can occur in proximal anal cancer as well.

The College of American Pathologists publishes a protocol for the pathologic examination and reporting of anal tumors. The most recent update was made in June 2012.
Staging

The TNM staging system for anal canal cancer developed by the AJCC is detailed in the guidelines. Since current recommendations for the primary treatment of anal canal cancer do not involve a surgical excision, most tumors are staged clinically with an emphasis on the size of the primary tumor as determined by direct examination and microscopic confirmation. A tumor biopsy is required. Rectal ultrasound to determine depth of tumor invasion is not used in the staging of anal cancer (see Clinical Presentation/Evaluation, below).

In the past, these guidelines have used the AJCC TNM skin cancer system for the staging of anal margin cancer since the 2 types of cancers have a similar biology. However, the latest addition of the AJCC Cancer Staging Manual made substantial changes to the cutaneous squamous cell carcinoma stagings, making them much less appropriate for the staging of cancers of the anal margin. Furthermore, many anal margin cancers have involvement of the anal canal or have high-grade, pre-cancerous lesions in the anal canal. It is important to look for such anal canal involvement, particularly if conservative management (simple excision) is being contemplated. Many patients, particularly HIV-positive ones, could be significantly undertreated. For these reasons, these guidelines use the anal canal staging system for tumors of both the anal canal and the anal margin.

The prognosis of anal carcinoma is related to the size of the primary tumor and the presence of lymph node metastases. According to the SEER database, between 1999 and 2006, 50% of anal carcinomas were localized at initial diagnosis; these patients had an 80% 5-year survival rate. Approximately 29% of patients had anal carcinoma that had already spread to regional lymph nodes at diagnosis; these patients had a 60% 5-year survival rate. The 12% of patients presenting with distant metastasis demonstrated a 30.5% 5-year survival rate. In a retrospective study of 270 patients treated for anal canal cancer with radiation therapy (RT) between 1980 and 1996, synchronous inguinal node metastasis was observed in 6.4% of patients with tumors staged as T1 or T2, and in 16% of patients with T3 or T4 tumors. In patients with N2-3 disease, survival was related to T-stage rather than nodal involvement with respective 5-year survival rates of 72.7% and 39.9% for patients with T1-T2 and T3-T4 tumors; however, the number of patients involved in this analysis was small. A recent analysis of >600 patients with non-metastatic anal carcinoma from the RTOG 98-11 trial also found that TN stage impacted clinical outcomes such as overall survival (OS), disease-free survival (DFS), and colostomy failure, with the worst prognoses for patients with T4,N0 and T3-4,N+ disease.

Lymph node staging in anal canal cancer is based on location of involved nodes: N1 designates metastasis in 1 or more perirectal nodes; N2 represents metastasis in unilateral internal iliac nodes and/or inguinal node(s); and N3 designates metastasis in perirectal and inguinal nodes and/or bilateral internal iliac and/or inguinal nodes. Lymph node staging in anal canal cancer is based on location of involved nodes: N1 designates metastasis in 1 or more perirectal nodes; N2 represents metastasis in unilateral internal iliac nodes and/or inguinal node(s); and N3 designates metastasis in perirectal and inguinal nodes and/or bilateral internal iliac and/or inguinal nodes. However, initial therapy of anal cancer does not typically involve surgery, and the true lymph node status may not be determined accurately by clinical and radiologic evaluation. Fine-needle aspiration (FNA) biopsy of inguinal nodes is recommended if tumor metastasis to these nodes is suspected. In a series of patients with anal cancer who underwent an abdominoperineal resection (APR), it was noted that pelvic nodal metastases were often under 0.5 cm, suggesting that routine radiologic evaluation with CT and PET scan may not be reliable in the determination of lymph node involvement.
Prognostic Factors
Multivariate analysis of data from the RTOG 98-11 trial showed that male sex and positive lymph nodes were independent prognostic factors for DFS in patients with anal cancer treated with 5-FU and radiation and either mitomycin or cisplatin. Male sex, positive nodes, and tumor size greater than 5 cm were independently prognostic for worse OS. A secondary analysis of this trial found that tumor diameter could also be prognostic for colostomy rate and time to colostomy. These results are consistent with earlier analyses from the EORTC 22861 trial, which found male sex, lymph node involvement, and skin ulceration to be prognostic for worse survival and local control. Similarly, recent multivariate analyses of data from the ACT I trial also showed that positive lymph nodes and male sex are prognostic indicators for higher local regional failure, anal cancer death, and lower OS.

Recent data suggest that HPV- and/or p16-positivity are prognostic for improved OS in patients with anal carcinoma. In a retrospective study of 143 tumor samples, p16-positivity was an independent prognostic factor for OS (HR, 0.07; 95% CI, 0.01–0.61; P = .016). Another study of 95 patients found similar results.

Management of Anal Carcinoma
Clinical Presentation/Evaluation
Approximately 45% of patients with anal carcinoma present with rectal bleeding, while approximately 30% have either pain or the sensation of a rectal mass. Following confirmation of squamous cell carcinoma by biopsy, the recommendations of the NCCN Anal Carcinoma Guidelines Panel for the clinical evaluation of patients with anal canal or anal margin cancer are very similar.

The panel recommends a thorough examination/evaluation, including a careful DRE, an anoscopy examination, and palpation of the inguinal lymph nodes, with FNA and/or excisional biopsy of nodes found to be enlarged by either clinical or radiologic examination. Evaluation of pelvic lymph nodes with CT or MRI of the pelvis is also recommended. These methods can also provide information on whether the tumor involves other abdominal/pelvic organs; however, assessment of T stage is primarily performed through clinical examination. A CT scan of the abdomen is also recommended to assess possible disease dissemination. Since veins of the anal region are part of the venous network associated with systemic circulation, chest CT scan is performed to evaluate for pulmonary metastasis. HIV testing and measurement of CD4 level is suggested, because the risk of anal carcinoma has been reported to be higher in HIV-positive patients. Gynecologic exam, including cervical cancer screening, is suggested for female patients due to the association of anal cancer and HPV. PET/CT scanning can be considered for node-positive disease and for T2-4,N0 anal canal and anal margin cancer to verify staging before treatment. PET/CT scanning has been reported to be useful in the evaluation of pelvic nodes, even in patients with anal canal cancer who have normal-sized lymph nodes on CT imaging. A systematic review and meta-analysis of 7 retrospective and 5 prospective studies calculated pooled estimates of sensitivity and specificity for detection of lymph node involvement by PET/CT to be 56% (95% CI, 45%–67%) and 90% (95% CI, 86%–93%), respectively. The panel does not consider PET/CT to be a replacement for a diagnostic CT. Furthermore, the panel noted that the routine use of a PET/CT scan for staging has not been validated.
Primary Treatment of Non-Metastatic Anal Carcinoma

In the past, patients with invasive anal carcinoma were routinely treated with an APR; however, local recurrence rates were high, 5-year survival was only 40% to 70%, and the morbidity with a permanent colostomy was considerable. In 1974, Nigro and coworkers observed complete tumor regression in some patients with anal carcinoma treated with preoperative 5-FU–based concurrent chemotherapy and radiation (chemoRT) including either mitomycin or porfiromycin, suggesting that it might be possible to cure anal carcinoma without surgery and permanent colostomy. Subsequent nonrandomized studies using similar regimens and varied doses of chemoRT provided support for this conclusion. Results of randomized trials evaluating the efficacy and safety of administering chemotherapy with RT support the use of combined modality therapy in the treatment of anal cancer.

Summaries of clinical trials involving patients with anal cancer have been presented, and several key trials are discussed below.

Chemotherapy

A phase III study from the EORTC compared the use of chemoRT (5-FU plus mitomycin) to RT alone in the treatment of anal carcinoma. Results from this trial showed that patients in the chemoRT arm had an 18% higher rate of locoregional control at 5 years and a 32% longer colostomy-free interval. The United Kingdom Coordinating Committee on Cancer Research (UKCCCR) randomized ACT I trial confirmed that chemoRT with 5-FU and mitomycin was more effective in controlling local disease than RT alone (relative risk, 0.54; 95% CI, 0.42–0.69; P < .0001), although no significant differences in OS were observed at 3 years. A recently published follow-up study on these patients demonstrates that a clear benefit of chemoRT remains after 13 years, including a benefit in OS. The median survival was 5.4 years in the RT arm and 7.6 years in the chemoRT arm. There was also a reduction in the risk of dying from anal cancer (HR, 0.67; 95% CI, 0.51–0.88, P = .004).

A few studies have addressed the efficacy and safety of specific chemotherapeutic agents in the chemoRT regimens used in the treatment of anal carcinoma. In a phase III Intergroup study, patients receiving chemoRT with the combination of 5-FU and mitomycin had a lower colostomy rate (9% vs. 22%; P = .002) and a higher 4-year DFS (73% vs. 51%; P = .0003) compared with patients receiving chemoRT with 5-FU alone, indicating that mitomycin is an important component of chemoRT in the treatment of anal carcinoma. The OS rate at 4 years was the same for the 2 groups, however, reflecting the ability to treat recurrent patients with additional chemoradiation or an APR.

Capecitabine, an oral fluoropyrimidine prodrug, is an accepted alternative to 5-FU in the treatment of colon and rectal cancer. Capecitabine has therefore been assessed as an alternative to 5-FU in chemoradiation regimens for non-metastatic anal cancer. A retrospective study compared 58 patients treated with capecitabine to 47 patients treated with infusional 5-FU; both groups also received mitomycin and radiation. No significant differences were seen in clinical complete response, 3-year locoregional control, 3-year OS, or colostomy-free survival between the 2 groups of patients. Another retrospective study compared 27 patients treated with capecitabine to 62 patients treated with infusional 5-FU; as in the other study, both groups also received mitomycin and radiation. Grade 3/4 hematologic toxicities were significantly lower in the capecitabine group, with no oncologic outcomes reported. Although data for this regimen are limited, the panel recommends mitomycin/capecitabine plus radiation as an alternative to mitomycin/5-FU plus radiation in the setting of stage I through III anal cancer.
Cisplatin as a substitute for 5-FU was evaluated in a phase II trial, and results suggest that cisplatin–containing and 5-FU–containing chemoRT may be comparable for treatment of locally advanced anal cancer.\(^{92}\)

The efficacy of replacing mitomycin with cisplatin has also been assessed. The phase III UK ACT II trial compared cisplatin with mitomycin and also looked at the effect of additional maintenance chemotherapy following chemoRT. Results from ACT II, the largest trial ever conducted in patients with anal cancer, were recently published.\(^{92}\)

In this study, over 900 patients with newly diagnosed anal cancer were randomly assigned to primary treatment with either 5-FU/mitomycin or 5-FU/cisplatin with radiotherapy. A continuous course (ie, no treatment gap) of radiation of 50.4 Gy was administered in both arms, and patients in each arm were further randomized to receive 2 cycles of maintenance therapy with 5-FU and cisplatin or no maintenance therapy. At a median follow-up of 5.1 years, no differences were observed in the primary endpoint of complete response rate in either arm for the chemoRT comparison or in the primary endpoint of progression-free survival for the comparison of maintenance therapy versus no maintenance therapy. In addition, a secondary endpoint, colostomy, did not show differences based on the chemotherapeutic components of chemoRT. These results demonstrate that replacement of mitomycin with cisplatin in chemoRT does not affect the rate of complete response, nor does administration of maintenance therapy decrease the rate of disease recurrence following primary treatment with chemoRT in patients with anal cancer.

Cisplatin as a substitute for mitomycin in the treatment of patients with non-metastatic anal carcinoma was also evaluated in the randomized phase III Intergroup RTOG 98-11 trial. The role of induction chemotherapy was also assessed. In this study, 682 patients were randomly assigned to receive either: 1) induction 5-FU plus cisplatin for 2 cycles followed by concurrent chemoRT with 5-FU and cisplatin; or 2) concurrent chemoRT with 5-FU and mitomycin.\(^{63,93}\) A significant difference was observed in the primary endpoint, 5-year DFS, in favor of the mitomycin group (57.8% vs. 67.8%; \(P = .006\)).\(^{93}\) Five-year OS was also significantly better in the mitomycin arm (70.7% vs. 78.3%; \(P = .026\)).\(^{93}\) In addition, 5-year colostomy-free survival showed a trend towards statistical significance (65.0% vs. 71.9%; \(P = .05\)), again in favor of the mitomycin group. Since the 2 treatment arms in the RTOG 98-11 trial differed with respect to use of either cisplatin or mitomycin in concurrent chemoRT as well as inclusion of induction chemotherapy in the cisplatin-containing arm, it is difficult to attribute the differences to the substitution of cisplatin for mitomycin or to the use of induction chemotherapy.\(^{78,94}\)

However, since ACT II demonstrated that the two chemoRT regimens are equivalent, some have suggested that results from RTOG 98-11 suggest that induction chemotherapy is probably detrimental.\(^{95}\)

Results from ACCORD 03 also suggest that there is no benefit of a course of chemotherapy given prior to chemoradiation.\(^{96}\) In this study, patients with locally advanced anal cancer were randomized to receive induction therapy with 5-FU/cisplatin or no induction therapy followed by chemoRT (they were further randomized to receive an additional radiation boost or not). No differences were seen between tumor complete response, tumor partial response, 3-year colostomy-free survival, local control, event-free survival, or 3-year OS. Final analysis of the ACCORD 03 trial was recently published.\(^{97}\) After a median follow-up of 50 months, no advantage to induction chemotherapy (or to the additional radiation boost) was observed, consistent with earlier results. A systematic review of randomized trials also showed no benefit to a course of induction chemotherapy.\(^{98}\)
A recent retrospective analysis, however, suggests that induction chemotherapy preceding chemoradiation may be beneficial for the subset of patients with T4 anal cancer.99 The 5-year colostomy-free survival rate was significantly better in T4 patients who received induction 5-FU/cisplatin compared to those who did not (100\% vs. $38 \pm 16.4\%$, $P = .0006$).

The combination of 5-FU, mitomycin C, and cisplatin has also been studied in a phase II trial, but was found to be too toxic.100 In addition, a trial assessing the safety and efficacy of capecitabine/oxaliplatin with radiation in the treatment of localized anal cancer has been completed, but final results have not yet been reported (clinicaltrials.gov NCT00093379). Preliminary results from this trial seem promising.101

Cetuximab is an epidermal growth factor receptor (EGFR) inhibitor, whose anti-tumor activity is dependent on the presence of wild-type KRAS.102 Because KRAS mutations appear to be very rare in anal cancer,103,104 the use of an EGFR inhibitor such as cetuximab has been considered to be a promising avenue of investigation. Results of the phase II ECOG 3205 and AIDS Malignancy Consortium 045 trials were recently reported.105 These trials evaluated the safety and efficacy of cetuximab with cisplatin/5-FU and radiation in immunocompetent (E3205) and HIV-positive (AMCO45) patients with anal squamous cell carcinoma. Although additional recruitment and follow-up are required to assess the primary endpoints of a reduction in 3-year locoregional failure rates, preliminary results from these trials are encouraging with acceptable toxicity and 2-year PFS rates of 92\% (95\% CI, 81\%–100\%) and 80\% (95\% CI, 61\%–90\%) in the immunocompetent and HIV-positive populations, respectively.105 However, the ACCORD 16 phase II trial, which was designed to assess response rate after chemoRT with cisplatin/5-FU and cetuximab, was terminated prematurely because of extremely high rates of serious adverse events.106 A phase I study of cetuximab with 5-fluorouracil, cisplatin, and radiation also saw a high rate of toxicity.107 Longer term results from E3205 and AMCO45 are needed.

Radiation Therapy

The optimal dose and schedule of RT for anal carcinoma also continues to be explored, and has been evaluated in a number of nonrandomized studies. In one study of patients with early-stage (T1 or Tis) anal canal cancer, most patients were effectively treated with RT doses of 40 to 50 Gy for Tis lesions and 50 to 60 Gy for T1 lesions.108 In another study, in which the majority of patients had stage II/III anal canal cancer, local control of disease was higher in patients who received RT doses greater than 50 Gy than in those who received lower doses (86.5\% vs. 34\%, $P = .012$).109 In a third study of patients with T3, T4, or lymph node-positive tumors, RT doses of ≥54 Gy administered with limited treatment breaks (less than 60 days) were associated with increased local control.110 The effect of further escalation of radiation dose was assessed in the ACCORD 03 trial, with the primary endpoint of colostomy-free survival at 3 years.96 No benefit was seen with the higher dose of radiation. These results are supported by much earlier results from the RTOG 92-08 trial111 and suggest that doses of >59 Gy provide no additional benefit to patients with anal cancer.

There is evidence that treatment interruptions, either planned or required by treatment-related toxicity, can compromise the effectiveness of treatment.73 In the phase II RTOG 92-08 trial, a planned 2-week treatment break in the delivery of chemoRT to patients with anal cancer was associated with increased locoregional failure rates and lower colostomy-free survival rates when compared to patients who only had treatment breaks for severe skin toxicity,112 although the trial was not designed for that particular comparison. In addition, the absence of a planned treatment break in the ACT II trial was considered to be at least
partially responsible for the high colostomy-free survival rates observed in that study (74% at 3 years).92 Although results of these and other studies have supported the benefit of delivery of chemoRT over shorter time periods,113-115 treatment breaks in the delivery of chemoRT are required in up to 80% of patients since chemoRT-related toxicities are common.115 For example, it has been reported that one-third of patients receiving primary chemoRT for anal carcinoma at RT doses of 30 Gy in 3 weeks develop acute anoproctitis and perineal dermatitis, increasing to one-half to two-thirds of patients when RT doses of 54 to 60 Gy are administered in 6 to 7 weeks.49

Some of the reported late side effects of chemoRT include increased frequency and urgency of defecation, chronic perineal dermatitis, dyspareunia, and impotence.116,117 In some cases, severe late RT complications, such as anal ulcers, stenosis, and necrosis, may necessitate surgery involving colostomy.117 In addition, results from a retrospective cohort study of data from the SEER registry showed the risk of subsequent pelvic fracture to be 3-fold higher in older women undergoing RT for anal cancer compared with older women with anal cancer who did not receive RT.118

There is an increasing body of literature suggesting that toxicity can be reduced with advanced radiation delivery techniques.73,119-127 Intensity-modulated radiation therapy (IMRT) utilizes detailed beam shaping to target specific volumes and limit the exposure of normal tissue.127 Multiple pilot studies have demonstrated reduced toxicity while maintaining local control using IMRT. For example, in a cross-study comparison of a multicenter study of 53 patients with anal cancer treated with concurrent 5-FU/mitomycin chemotherapy and IMRT compared to patients in the 5-FU/mitomycin arm of the randomized RTOG 98-11 study, which used conventional 3-D RT, the rates of grade 3/4 dermatologic toxicity were 38%/0% for IMRT-treated patients compared to 43%/5% for those undergoing conventional RT.63,127 No decrease in treatment effectiveness or local control rates was observed with use of IMRT, although the small sample size and short duration of follow-up limit the conclusions drawn from such a comparison. In one retrospective comparison between IMRT and conventional radiotherapy, IMRT was less toxic and showed better efficacy in 3-year OS, locoregional control, and progression-free survival.128 In a larger retrospective comparison, no significant differences in local recurrence-free survival, distant metastasis-free survival, colostomy-free survival, and OS at 2 years were seen between patients receiving IMRT and those receiving 3-D conformal radiotherapy, despite the fact that the IMRT group had a higher average N stage.129

The only prospective study assessing IMRT for anal cancer is the phase II dose-painted IMRT study, RTOG 0529. This trial did not meet its primary endpoint of reducing grade 2+ combined acute genitourinary and gastrointestinal adverse events by 15% compared to the chemoRT/5-FU/mitomycin arm from RTOG 98-11, which used conventional radiation.130 Of 52 evaluable patients, the grade 2+ combined acute adverse event rate was 77%; the rate in RTOG 98-11 was also 77%. However, significant reductions were seen in grade 2+ hematologic events (73% vs. 85%; \(P = .032\)), grade 3+ gastrointestinal events (21% vs. 36%; \(P = .008\)), and grade 3+ dermatologic events (23% vs. 49%; \(P < .0001\)). Clinical outcomes will be reported in the future and are of great interest because of the risk of underdosing (marginal miss) associated with highly conformal RT.130

Recommendations regarding RT doses follow the multifield technique used in the RTOG 98-11 trial.63 PET/CT should be considered for treatment planning.131 All patients should receive a minimum RT dose of 45 Gy to the primary cancer. The recommended initial RT dose is 30.6 Gy to the pelvis, anus, perineum, and inguinal nodes; there should be
attempts to reduce the dose to the femoral heads. Field reduction off the superior field border and node-negative inguinal nodes is recommended after delivery of 30.6 Gy and 36 Gy, respectively. For patients treated with an anteroposterior-posteroanterior (AP-PA) rather than multifield technique, the dose to the lateral inguinal region should be brought to the minimum dose of 36 Gy using an anterior electron boost matched to the PA exit field. Patients with disease clinically staged as node-positive or T3-T4 or with T2 residual disease after 45 Gy should receive an additional boost of 9 to 14 Gy. The consensus of the panel is that IMRT may be used in place of 3-D conformal RT in the treatment of anal carcinoma. IMRT requires expertise and careful target design to avoid reduction in local control by marginal miss. The clinical target volumes for anal cancer used in the RTOG 0529 trial have been described in detail. Also see http://atc.wustl.edu/protocols/rtog-closed/0529/ANAL_Ca_CTVs_5-21-07_Final.pdf and http://www.rtog.org/CoreLab/ContouringAtlases/Anorectal.aspx for more details of the contouring atlas defined by RTOG.

Treatment of Anal Cancer in Patients with HIV/AIDS

As discussed above (see Risk Factors), patients with HIV/AIDS have been reported to be at increased risk for anal carcinoma. Although most studies evaluating outcomes of patients with HIV/AIDS treated with chemoRT for anal carcinoma are retrospective, there is evidence to indicate that patients with anal carcinoma as the first manifestation of HIV/AIDS (especially those with a CD4 count of ≥200/mm³) may be treated with the same regimen as HIV-negative patients.

Furthermore, in a recent retrospective cohort study of 1184 veterans diagnosed with squamous cell carcinoma of the anus between 1998 and 2004 (15% of whom tested positive for HIV), no differences with respect to receipt of treatment or 2-year survival rates were observed when the group of patients infected with HIV was compared with the group of patients testing negative for HIV. This conclusion was supported by a study of 36 consecutive patients with anal cancer including 19 immunocompetent and 17 immunodeficient (14 HIV-positive) patients who showed no differences in the efficacy or toxicity of chemoRT. In contrast, a recent cohort comparison of 40 HIV-positive patients and 81 HIV-negative patients with anal canal cancer found local relapse rates to be 4 times higher in the HIV-positive group (62% vs. 13%) at 3 years and found significantly higher rates of severe acute skin toxicity for patients infected with HIV. However, no differences in rates of complete response or 5-year OS were observed between the groups in that study.

It is unclear whether increased compliance with HAART is associated with better outcomes following chemoRT for anal carcinoma. Patients with active HIV/AIDS-related complications or a history of complications (eg, malignancies, opportunistic infections) may not tolerate full-dose therapy and may require dosage adjustment.

Recommendations for the Primary Treatment of Anal Canal Cancer

Currently, concurrent chemoRT is the recommended primary treatment for patients with nonmetastatic anal canal cancer. Mitomycin and 5-FU or mitomycin and capecitabine are administered concurrently with radiation. Most studies have delivered 5-FU as a protracted 96- to 120-hour infusion during the first and fifth weeks of RT, and bolus injection of mitomycin is typically given on the first or second day of the 5-FU infusion. Capecitabine is given orally, Monday through Friday, for 4 or 6 weeks, with bolus injection of mitomycin and concurrent radiation.

RT is associated with significant side effects. Patients should be counseled on infertility risks and given information regarding sperm,
Recommendations for the Primary Treatment of Anal Margin Cancer

Anal margin lesions can be treated with either local excision or chemoRT depending on the clinical stage. Primary treatment for patients with T1, N0 well-differentiated anal margin cancers is by local excision with adequate margins. The American Society of Colon and Rectal Surgeons defines an adequate margin as 1 cm.\(^{37}\) If the margins are not adequate, re-excision is the preferred treatment option. Local RT with or without continuous infusion 5-FU- or capecitabine-based chemotherapy can be considered as an alternative treatment option when surgical margins are inadequate. For all other stages of anal margin cancer, the treatment options are the same as for anal canal cancer (see above).\(^{141}\)

Treatment of Metastatic Anal Cancer

It has been reported that the most common sites of anal cancer metastasis outside of the pelvis are the liver, lung, and extrapelvic lymph nodes.\(^{142}\) Since anal carcinoma is a rare cancer and only 10% to 20% of patients with anal carcinoma present with extrapelvic metastatic disease,\(^{142}\) only limited data are available on this population of patients. Despite this fact, there is some evidence to indicate that chemotherapy with a fluoropyrimidine-based regimen plus cisplatin has some benefit in patients with metastatic anal carcinoma.\(^{141-144}\) There is no evidence supporting resection of metastatic disease.

Treatment recommendations for patients with a distant metastasis should be individualized, but metastatic disease is usually treated with cisplatin-based chemotherapy.\(^{141}\) The efficacies of other regimens are also being assessed.\(^{145,146}\) Enrollment in a clinical trial is another option. For example, the phase II International Multicentre InterAACT study (clinicaltrials.gov NCT02051868) is comparing cisplatin plus 5-FU with carboplatin plus paclitaxel in patients with unresectable locally recurrent or metastatic anal squamous cell carcinoma. Palliative RT (best administered with 5-FU– or capecitabine–based chemotherapy with a platinum agent) can also be given to patients with metastatic disease for local control in the case of a symptomatic bulky primary.\(^{131}\) If cisplatin-based chemotherapy fails, no other regimens have been shown to be effective.

Follow-up and Surveillance Following Primary Treatment

Following primary treatment of non-metastatic anal cancer, the surveillance and follow-up treatment recommendations for anal margin and anal canal cancer are the same. Patients are re-evaluated by DRE between 8 and 12 weeks after completion of chemoRT. Following re-evaluation, patients are classified according to whether they have a complete remission of disease, persistent disease, or progressive disease. Patients with persistent disease but without evidence of progression may be managed with close follow-up (in 4 weeks) to see if further regression occurs.

The National Cancer Research Institute’s ACT II study compared different chemoRT regimens and found no difference in OS or progression-free survival.\(^{147}\) Interestingly, 29% of patients in this trial who did not show a complete response at 11 weeks had achieved a complete response by 26 weeks. Based on these results, the panel believes it may be appropriate to follow patients who have not achieved a complete clinical response with persistent anal cancer for up to 6 months after completion of radiation and chemotherapy, as long as there is no evidence of progressive disease during this period of follow-up. Persistent disease may continue to regress even at 26 weeks post-
Anal Carcinoma

treatment, and APR can thereby be avoided in some patients. If biopsy-proven disease progression occurs, further intensive treatment is indicated (see Treatment of Locally Progressive or Recurrent Anal Carcinoma, below).

Although a clinical assessment of progressive disease requires histologic confirmation, patients can be classified as having a complete remission without biopsy verification if clinical evidence of disease is absent. The panel recommends that these patients undergo evaluation every 3 to 6 months for 5 years, including DRE, anoscopy, and inguinal node palpation. Annual chest, abdominal, and pelvic imaging is recommended for 3 years for patients with slow disease regression and for those who initially had locally advanced disease (i.e., T3/T4 tumor) or node-positive cancers.

Treatment of Locally Progressive or Recurrent Anal Carcinoma

Despite the effectiveness of chemoRT in the primary treatment of anal carcinoma, rates of locoregional failure of 10% to 30% have been reported. Some of the disease characteristics that have been associated with higher recurrence rates following chemoRT include higher T stage and higher N stage (also see the section on Prognostic Factors, above).

Evidence of progression found on DRE should be followed by biopsy as well as restaging with CT and/or PET imaging. Patients with biopsy-proven locally progressive disease are candidates for radical surgery with an APR and colostomy.

A recent multicenter retrospective cohort study looked at the cause-specific colostomy rates in 235 patients with anal cancer who were treated with radiotherapy or chemoradiation from 1995 to 2003. The 5-year cumulative incidence rates for tumor-specific and therapy-specific colostomy were 26% (95% CI, 21%–32%) and 8% (95% CI, 5%–12%), respectively. Larger tumor size (>6 cm) was a risk factor for tumor-specific colostomy, while local excision prior to radiotherapy was a risk factor for therapy-specific colostomy. However, it should be noted that these patients were treated with older chemotherapy and RT regimens, which could account for these high colostomy rates.

In studies involving a minimum of 25 patients undergoing an APR for anal carcinoma, 5-year survival rates of 39% to 64% have been observed. Complication rates were reported to be high in some of these studies. Factors associated with worse prognosis following APR include an initial presentation of node-positive disease and RT doses <55 Gy used in the treatment of primary disease.

It has been shown that for patients undergoing an APR that was preceded by RT, closure of the perineal wound using rectus abdominis myocutaneous flap reconstruction resulted in decreased perineal wound complications. Muscle flap reconstruction of the perineum should therefore be considered for patients with extensive previous RT to the area.

A recent retrospective analysis of the medical records of 14 patients who received intraoperative radiation therapy (IORT) during APR revealed that IORT is unlikely to improve local control or to give a survival benefit. This technique is not recommended during surgery in patients with recurrent anal cancer.

Inguinal node dissection is reserved for recurrence in that area, and can be performed without an APR in cases where recurrence is limited to the inguinal nodes. Patients who develop inguinal node metastasis who do not undergo an APR can be considered for RT to the groin with or without chemotherapy, if no prior RT to the groin was given.
Follow-up and Surveillance Following Resection

Following APR, patients should undergo re-evaluation every 3 to 6 months for 5 years, including clinical evaluation for nodal metastasis (ie, inguinal node palpation). In addition, it is recommended that these patients undergo annual imaging of the chest, abdomen, and pelvis for 3 years. In one retrospective study of 105 patients with anal canal carcinoma who had an APR between 1996 and 2009, the overall recurrence rate following APR was 43%. Those with T3/4 tumors or involved margins were more likely to experience recurrence. The 5-year survival rate after APR has been reported to be 60% to 64%.

Summary

The NCCN Anal Carcinoma Guidelines Panel believes that a multidisciplinary approach including physicians from gastroenterology, medical oncology, surgical oncology, radiation oncology, and radiology is necessary for treating patients with anal carcinoma. Recommendations for the primary treatment of anal margin cancer and anal canal cancer are very similar and include continuous infusion 5-FU/mitomycin-based RT or capecitabine/mitomycin-based RT in most cases. The exception is small, well-differentiated anal margin lesions, which can be treated with margin-negative local excision alone. Follow-up clinical evaluations are recommended for all patients with anal carcinoma because additional curative-intent treatment is possible. Patients with biopsy-proven evidence of locoregional progressive disease following primary treatment should undergo an APR. Following complete remission of disease, patients with a local recurrence should be treated with an APR with a groin dissection if there is clinical evidence of inguinal nodal metastasis, and patients with a regional recurrence in the inguinal nodes can be treated with an inguinal node dissection, with consideration of RT with or without chemotherapy if no prior RT to the groin was given. Patients with evidence of extrapelvic metastatic disease should be treated with cisplatin-based chemotherapy or enrolled in a clinical trial. The panel endorses the concept that treating patients in a clinical trial has priority over standard or accepted therapy.
References

47. Kreimer AR, Gonzalez P, Katki HA, et al. Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: a nested analysis within the Costa Rica Vaccine Trial. Lancet Oncol...

144. Jaiyesimi IA, Pazdur R. Cisplatin and 5-fluorouracil as salvage therapy for recurrent metastatic squamous cell carcinoma of the anal

147. Glynne-Jones R, James R, Meadows H, et al. Optimum time to assess complete clinical response (CR) following chemoradiation (CRT) using mitomycin (MMC) or cisplatin (CisP), with or without maintenance CisP/5FU in squamous cell carcinoma of the anus: Results of ACT II [abstract]. ASCO Meeting Abstracts 2012;30:4004. Available at: http://meeting.ascpubs.org/cgi/content/abstract/30/15_suppl/4004.

